

Vishay Semiconductors

High Speed Infrared Emitting Diodes, 890 nm, GaAlAs, DH

DESCRIPTION

VSMF2890RG(G)X01 series are infrared, 890 nm emitting diodes in GaAlAs (DH) technology with high radiant power and high speed, molded in clear, untinted plastic packages (with lens) for surface mounting (SMD).

FEATURES

- · Package type: surface mount
- Package form: GW, RGW
- Dimensions (L x W x H in mm): 2.3 x 2.3 x 2.8
- AEC-Q101 gualified
- Peak wavelength: λ_p = 890 nm
- High reliability
- High radiant power
- · High radiant intensity
- Angle of half intensity: $\phi = \pm 12^{\circ}$
- · Low forward voltage
- Suitable for high pulse current operation
- Terminal configurations: gullwing or reserve gullwing
- Package matches with detector VEMD2000X01 series
- Floor life: 4 weeks, MSL 2a, acc. J-STD-020
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- IrDA compatible data transmission
- 3D TV
- Miniature light barrier
- Photointerrupters
- · Optical switch
- · Shaft encoders
- IR emitter source for proximity applications

PRODUCT SUMMARY					
COMPONENT	l _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)	
VSMF2890RGX01	40	± 12	890	30	
VSMF2890GX01	40	± 12	890	30	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VSMF2890RGX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Reverse gullwing		
VSMF2890GX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Gullwing		

Note

• MOQ: minimum order quantity

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Document Number: 85163 For technical questions, contact: emittertechsupport@vishay.com Rev. 1.0, 13-Apr-11

AUTOMOTIVE RoHS COMPLIANT GREEN (5-2008)

Vishay Semiconductors High Speed Infrared Emitting Diodes, 890 nm, GaAlAs, DH

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	5	V
Forward current		IF	100	mA
Peak forward current	$t_p/T = 0.5, t_p = 100 \ \mu s$	I _{FM}	200	mA
Surge forward current	t _p = 100 μs	I _{FSM}	1	А
Power dissipation		Pv	160	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Soldering temperature	Acc. figure 9, J-STD-020	T _{sd}	260	°C
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	250	K/W

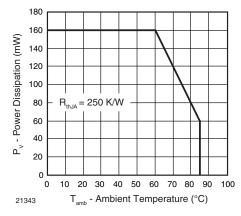
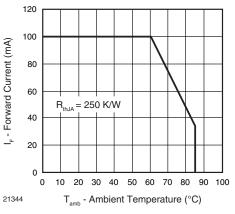



Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

BASIC CHARACTERSITICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F	1.25	1.4	1.6	V
	I _F = 1 A, t _p = 100 μs	V _F		2.3		V
Temperature coefficient of $V_{\rm F}$	I _F = 1 mA	TK _{VF}		- 1.8		mV/K
	I _F = 100 mA	TK _{VF}		- 1.1		mV/K
Reverse current	V _R = 5 V	I _R			10	μA
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0 mW/cm ²	CJ		125		pF
Radiant intensity	I _F = 100 mA, t _p = 20 ms	l _e	20	40	60	mW/sr
	I _F = 1 A, t _p = 100 μs	I _F = 1 A, t _p = 100 μs I _e		350		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e		40		mW
Temperature coefficient of ϕ_{e}	I _F = 100 mA	TKφ _e		- 0.35		%/K
Angle of half intensity		φ		± 12		deg
Peak wavelength	I _F = 30 mA	λ _p	870	890	910	nm
Spectral bandwidth	I _F = 30 mA	Δλ		40		nm
Temperature coefficient of λ_p	I _F = 30 mA	TKλp		0.25		nm/K
Rise time	I _F = 100 mA, 20 % to 80 %	t _r		30		ns
Fall time	I _F = 100 mA, 20 % to 80 %	t _f		30		ns
Cut-off frequency	I _{DC} = 70 mA, I _{AC} = 30 mA pp	f _c		12		MHz
Virtual source diameter		d		1.5		mm

For technical questions, contact: emittertechsupport@vishay.com

Document Number: 85163 Rev. 1.0, 13-Apr-11

High Speed Infrared Emitting Diodes, Vishay Semiconductors 890 nm, GaAlAs, DH

BASIC CHARACTERSITICS (T_{amb} = 25 °C, unless otherwise specified)

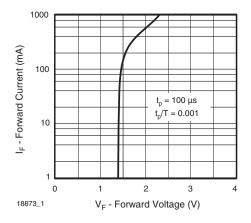


Fig. 3 - Forward Current vs. Forward Voltage

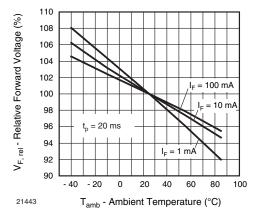


Fig. 4 - Relative Forward Voltage vs. Ambient Temperature

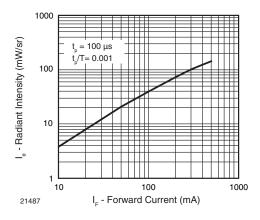


Fig. 5 - Radiant Intensity vs. Forward Current

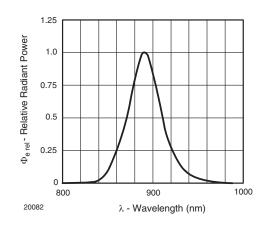


Fig. 6 - Relative Radiant Power vs. Wavelength

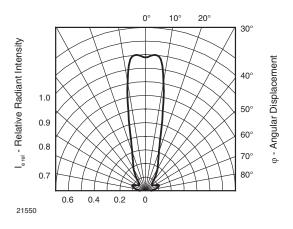


Fig. 7 - Relative Radiant Intensity vs. Angular Displacement

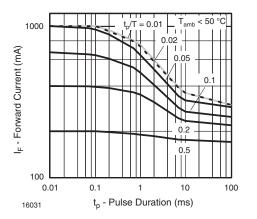
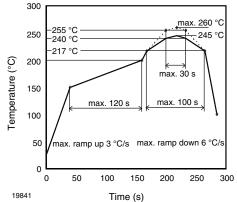


Fig. 8 - Pulse Forward Current vs. Pulse Duration

Document Number: 85163 Rev. 1.0, 13-Apr-11


For technical questions, contact: emittertechsupport@vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors High Speed Infrared Emitting Diodes, 890 nm, GaAlAs, DH

SOLDER PROFILE

Fig. 9 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

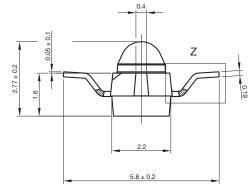
DRYPACK

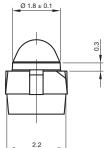
Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

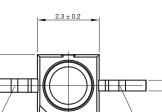
FLOOR LIFE

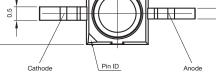
Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

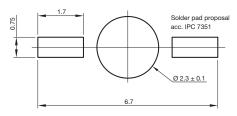
Floor life: 4 weeks

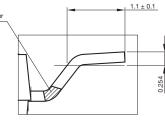

Conditions: T_{amb} < 30 °C, RH < 60 %


Moisture sensitivity level 2a, acc. to J-STD-020.


DRYING

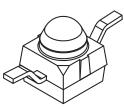

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.


PACKAGE DIMENSIONS in millimeters: VSMF2890RGX01



Drawing-No.: 6.544-5391.02-4 Issue: 2; 18.03.10 21517

 2.3 ± 0.2



Z 20:1

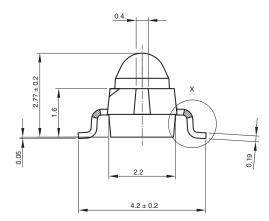
exposed copp

Not indicated tolerances ± 0.1

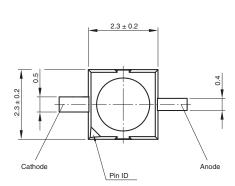
www.vishay.com

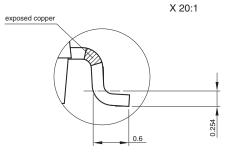
For technical questions, contact: emittertechsupport@vishay.com

Document Number: 85163 Rev. 1.0, 13-Apr-11

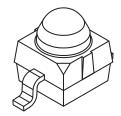

This document is subject to change without notice.

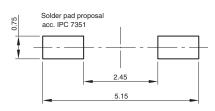
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000




High Speed Infrared Emitting Diodes, Vishay Semiconductors 890 nm, GaAlAs, DH

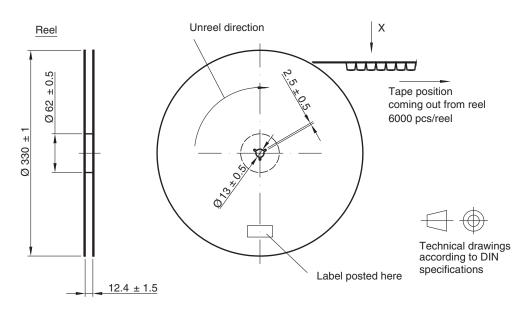
PACKAGE DIMENSIONS in millimeters: VSMF2890GX01



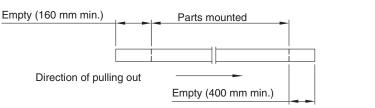


Not indicated tolerances ± 0.1

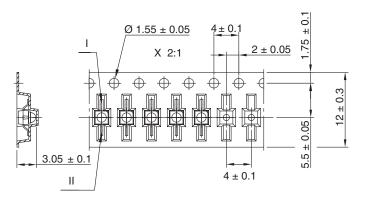
Drawing-No.: 6.544-5383.02-4 Issue: 4; 18.03.10 ²¹⁴⁸⁸


Document Number: 85163 Rev. 1.0, 13-Apr-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Vishay Semiconductors High Speed Infrared Emitting Diodes, 890 nm, GaAlAs, DH

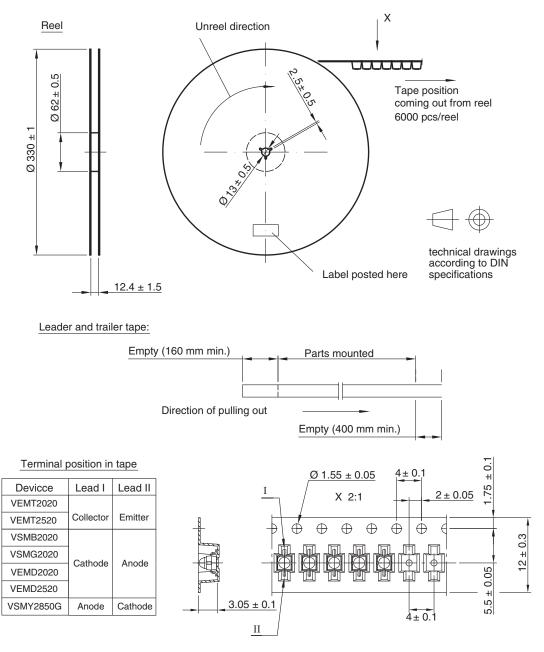
TAPING AND REEL DIMENSIONS in millimeters: VSMF2890RGX01


Leader and trailer tape:

Terminal position in tape

Devicce	Lead I	Lead II
VEMT2000		
VEMT2500	Collector	Emitter
VEMD2000		
VEMD2500	O a the a dia	Anode
VSMB2000	Cathode	Anode
VSMG2000		
VSMY2850RG	Anode	Cathode

Drawing-No.: 9.800-5100.01-4 Issue: 2; 18.03.10 21572



This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

High Speed Infrared Emitting Diodes, Vishay Semiconductors 890 nm, GaAlAs, DH

TAPING AND REEL DIMENSIONS in millimeters: VSMF2890GX01

Drawing-No.: 9.800-5091.01-4 Issue: 3; 18.03.10 21571

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.